Tag: Must-Read

*Determination and Characterization of a Cannabinoid Receptor in Rat Brain

December 1988 Molecular Pharmacology 34(5):605-13

William Devane, F.A. III Dysarz, M.R. Johnson, Allyn C Howlett

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.572.7935&rep=rep1&type=pdf 

The determination and characterization of a cannabinoid receptor from brain are reported. A biologically active bicyclic cannabinoid analgetic CP-55,940 was tritium-labeled to high specific activity. Conditions for binding to rat brain P2 membranes and synaptosomes were established. The pH optimum was between 7 and 8, and specific binding could be eliminated by heating the membranes to 60 degrees. Binding to the P2 membranes was linear within the range of 10 to 50 micrograms of protein/ml. Specific binding (defined as total binding displaced by 1 microM delta 9-tetrahydrocannabinol (delta 9-THC) or 100 nM desacetyllevonantradol) was saturable. The Kd determined from Scatchard analysis was 133 pM, and the Bmax for rat cortical P2 membranes was 1.85 pmol/mg of protein. The Hill coefficient for [3H]CP-55,940 approximated 1, indicating that, under the conditions of assay, a single class of binding sites was determined that did not exhibit cooperativity. The binding was rapid (kon approximately 2.6 x 10(-4) pM-1 min-1) and reversible (Koff approximately 0.016 min-1) and (koff’ greater than 0.06 min-1). The two Kd values estimated from the kinetic constants approximately 55 pM and exceeded 200 pM, respectively. The binding of the agonist ligand [3H]CP-55,940 was decreased by the nonhydrolyzable GTP analog guanylylimidodiphosphate. The guanine nucleotide induced a more rapid dissociation of the ligand from the binding site, consistent with an allosteric regulation of the putative receptor by a G protein. The binding was also sensitive to MgCl2 and CaCl2. Binding of [3H]CP-55,940 was displaced by cannabinoid drugs in the following order of potency: CP-55,940 greater than or equal to desacetyllevonantradol greater than 11-OH-delta 9-THC = delta 9-THC greater than cannabinol. Cannabidiol and cannabigerol displaced [3H]CP-55,940 by less than 50% at 1 microM concentrations. The (-)-isomer of CP-55,940 displaced with 50-fold greater potency than the (+)-isomer. This pharmacology is comparable to both the inhibition of adenylate cyclase in vitro and the analgetic activity of these compounds in vivo. The criteria for a high affinity, stereoselective, pharmacologically distinct cannabinoid receptor in brain tissue have been fulfilled.

Abstract

*Anandamide, an endogenous ligand of the cannabinoid receptor, induces hypomotility and hypothermia in vivo in rodents

Jacqueline N.Crawley, Rebecca L.Corwin, John K.Robinson, Christian C.Felder, William A.Devane, Julius Axelrod

Pharmacology Biochemistry and Behavior Volume 46, Issue 4, December 1993, Pages 967-972

doi: 10.1016/0091-3057(93)90230-q

Anandamine (arachidonylethanolamide), an arachidonic acid derivative isolated from the porcine brain, displays binding characteristics indicative of an endogenous ligand for the cannabinoid receptor. The functional activity of anandamide was tested in vivo using behavioral and physiological paradigms in laboratory rodents. At IP doses from 2 to 20 mg/kg in mice, anandamide significantly decreased spontaneous motor activity in a Digiscan open field. Rectal body temperature significantly decreased at doses of 10 and 20 mg/kg in rats. At doses from 0.03 to 30 mg/kg, anandamide had no significant effect on chow consumption in ad lib fed rats. Over the dose range of 2–20 mg/kg, anandamide did not show anxiolytic properties in the mouse light ⇌ dark exploration model of anxiety. Over the dose range of 0.3–3 mg/kg, anandamide had no effect on choice accuracy or session duration in the delayed nonmatching to sample memory task (DNMTS) in rats. These results demonstrate that anandamide has biological and behavioral effects in awake rodents, some of which are similar to the reported actions of THC.

Abstract

*Qualitative and Quantitative Aspects of the Inheritance of Chemical Phenotype in Cannabis

Giuseppe Mandolino, Manuela Bagatta, Andrea Carboni, Paolo Ranalli, Etienne de Meijer

March 2003 Journal of Industrial Hemp 8(2):51-72

DOI: 10.1300/J237v08n02_04

Four crosses were made between Cannabis plants with “pure” CBD and THC chemotypes. The F1 plants obtained were self-fertilised to produce F2s. Chemotypical distributions were analysed by gas-chromatography. A segregation analysis of the different F2 progenies obtained showed that chemotype, estimated as CBD/THC ratio, behaves as a qualitative character, and a model for a single locus B, with two co-dominant alleles, BD and BT is described. The CBD/THC ratios in the F1 offsprings were found to be significantly different in the heterozygous plants from the different pedigrees. The amount of CBD plus THC in the same pedigrees was also described. Heterosis was found to be a common feature, but not a general one, of cannabinoid accumulation in the F1s. Distribution of the values of cannabinoid content in classes was found to be normal. RAPD markers linked to the segregating chemotypes (“pure” CBD and “pure” THC) were identified by bulk segregant analysis, and the degree of linkage of these markers with the chemotype was described.

Abstract

*Early phytocannabinoid chemistry to endocannabinoids and beyond


Raphael Mechoulam, Lumír O. Hanuš, Roger Pertwee and Allyn C. Howlett
Nature Reviews / Neuroscience Vol 15 Nov 1014 Pg 757-764 Perspectives
DOI: 10.1038/nrn3811

Isolation and structure elucidation of most of the major cannabinoid constituents — including Δ9-tetrahydrocannabinol (Δ9-THC), which is the principal psychoactive molecule in Cannabis sativa — was achieved in the 1960s and 1970s. It was followed by the identification of two cannabinoid receptors in the 1980s and the early 1990s and by the identification of the endocannabinoids shortly thereafter. There have since been considerable advances in our understanding of the endocannabinoid system and its function in the brain, which reveal potential therapeutic targets for a wide range of brain disorders.

Abstract

*Development and Validation of a Reliable and Robust Method for the Analysis of Cannabinoids and Terpenes in Cannabis.

Giese MW, Lewis MA, Giese L, Smith KM.
J AOAC Int. 
DOI: 10.5740/jaoacint.15-116

The requirements for an acceptable cannabis assay have changed dramatically over the years resulting in a large number of laboratories using a diverse array of analytical methodologies that have not been properly validated. Due to the lack of sufficiently validated methods, we conducted a single- laboratory validation study for the determination of cannabinoids and terpenes in a variety of commonly occurring cultivars. The procedure involves high- throughput homogenization to prepare sample extract, which is then profiled for cannabinoids and terpenes by HPLC-diode array detector and GC-flame ionization detector, respectively. Spike recovery studies for terpenes in the range of 0.03-1.5% were carried out with analytical standards, while recovery studies for Δ9-tetrahydrocannabinolic acid, cannabidiolic acid, Δ9-tetrahydrocannabivarinic acid, and cannabigerolic acid and their neutral counterparts in the range of 0.3-35% were carried out using cannabis extracts. In general, accuracy at all levels was within 5%, and RSDs were less than 3%. The interday and intraday repeatabilities of the procedure were evaluated with five different cultivars of varying chemotype, again resulting in acceptable RSDs. As an example of the application of this assay, it was used to illustrate the variability seen in cannabis coming from very advanced indoor cultivation operations.

Abstract

*Cannabidiol Does Not Convert to D9-Tetrahydrocannabinol in an In Vivo Animal Model

Louise Wray,Colin Stott, Nicholas Jones, and Stephen Wright
 Cannabis and Cannabinoid Research Volume 2.1, 2018
 DOI: 10.1089/can.2017.0032

Cannabidiol (CBD) can convert to Δ⁹-tetrahydrocannabinol (THC) in vitro with prolonged exposure to simulated gastric fluid; however, in vitro conditions may not be representative of the in vivo gut environment. Using the minipig, we investigated whether enteral CBD converts to THC in vivo. Synthetic CBD (100 mg/mL) was administered orally in a sesame oil formulation twice daily to minipigs (N=3) in 15 mg/kg doses for 5 consecutive days. Blood samples were taken before and 1, 2, 4, and 6 h after morning doses on Days 1 and 5. Six hours after the final dose on Day 5, the animals were euthanized, and samples of gastrointestinal (GI) tract contents were obtained. Liquid chromatography with tandem mass spectrometry analysis determined CBD, THC, and 11-hydroxy-THC (11-OH-THC) concentrations. Lower limits of quantification: plasma CBD=1 ng/mL, plasma THC and 11-OH-THC=0.5 ng/mL, GI tract CBD=2 ng/mL, and GI tract THC and 11-OH-THC=1 ng/mL. THC and 11-OH-THC were undetectable in all plasma samples. Maximum plasma concentrations (Cmax) of CBD were observed between 1 and 4 h on Days 1 and 5. CBD was present in plasma 6 h after administration on Days 1 (mean 33.6 ng/mL) and 5 (mean 98.8 ng/mL). Mean Cmax CBD values, 328 ng/mL (Day 1) and 259 ng/mL (Day 5), were within range of those achieved in clinical studies. Mean CBD exposure over 6 h was similar on Days 1 (921 h·ng/mL) and 5 (881 h·ng/mL). THC and 11-OH-THC were not detected in all GI tract samples. Mean CBD concentrations reached 84,500 ng/mL in the stomach and 43,900 ng/mL in the small intestine. Findings of the present study show that orally dosed CBD, yielding clinically relevant plasma exposures, does not convert to THC in the minipig, a species predictive of human GI tract function.

Abstract

*A historical overview of chemical research on cannabinoids

Raphael Mechoulam , Lumır Hanus

Chemistry and Physics of Lipids 108 (2000) 1–13

DOI: 10.1016/S0009-3084(00)00184-5

The chemical research on the plant cannabinoids and their derivatives over two centuries is concisely reviewed. The tortuous path leading to the discovery of the endogenous cannabinoids is described. Future directions, which will probably be followed are delineated.

Abstract

*The inheritance of chemical phenotype in Cannabis sativa L. (V): regulation of the propyl-/pentyl cannabinoid ratio, completion of a genetic model

E. P. M. de Meijer . K. M. Hammond
May 2016 Euphytica 210(2)
DOI 10.1007/s10681-016-1721-3

In order to complete a genetic model for the inheritance of chemotype in Cannabis, this paper explores the regulation of the propyl-/pentyl cannabinoid ratio. Plants almost pure in compounds with a C5 side chain are by far the most common, and such a chemotype can be considered a wild-type condition. Mutant progenitors with higher levels of the rarer cannabinoid THC-C3 (tetrahydrocannabivarin) were identified. Their propyl cannabinoid proportion in the total cannabinoid fraction (PC3) ranged from 14 to 69 %, which, through selective inbreeding, could be increased to highly specific lineage maxima. Inbred plants with maximised PC3 derived from the different progenitors, were then crossed with a pure C5 wild type and the PC3 distribution patterns of the F2s examined. Distinct patterns, compatible with oligogenic and polygenic segregation appeared. It was hypothesised that the PC3 regulating loci of the six source progenitors would be at least partially different, complementary, and additive in their phenotypical effect. So, high PC3 offspring from the different lineages were mutually crossed. Inbred lines derived from multi-cross hybrid combinations reached unprecedented PC3 levels of up to 96 % which supports the hypothesis. For the regulation of C3/C5 ratios, a model of a multiple locus A 1–A 2–…A n is proposed, with the pentyl- and propyl cannabinoid pathway being enhanced by alleles A pe1−n and A pr1−n, respectively.

Abstract

*The inheritance of chemical phenotype in Cannabis sativa L. (IV): cannabinoid-free plants

E. P. M. de Meijer, E K. M. Hammond, A Sutton
Euphytica (2009) 168:95–112
DOI 10.1007/s10681-009-9894-7

A genetic factor that blocks the cannabinoid biosynthesis in Cannabis sativa has been investigated. Crosses between cannabinoid-free material and high content, pharmaceutical clones were performed. F1s were uniform and had cannabinoid contents much lower than the mean parental value. Inbred F2 progenies segregated into discrete groups: a cannabinoid-free chemotype, a chemotype with relatively low cannabinoid content and one with relatively high content, in a monogenic 1:2:1 ratio. In our model the cannabinoid knockout factor is indicated as a recessive allele o, situated at locus O, which segregates independently from previously presented chemotype loci. The genotype o/o underlies the cannabinoid-free chemotype, O/o is expressed as an intermediate, low content chemotype, and O/O is the genotype of the high content chemotype. The data suggests that locus O governs a reaction in the pathway towards the phenolic cannabinoid precursors. The composition of terpenoids and various other compound classes of cannabinoid-free segregants remains unaffected. Backcrossing produced cannabinoid-free homologues of pharmaceutical production clones with potential applications in pharmacological research. A new variant of the previously presented allele ‘B 0’, that almost completely obstructs the conversion of CBG into CBD, was also selected from the source population of the cannabinoid knockout factor.

Abstract